NGVA Europe

pondělí, 9. listopadu 2015

Scientists increase capacity of NGV fuel tanks

více » 
 

pondělí, 9. listopadu 2015

Audi and two French distributors of natural gas new members of NGVA Europe

více » 
 

NGVA Global

pátek, 22. září 2017

Small-scale LNG and Natural Gas Fuel are Key Operations for Fluxys

více » 
 

pátek, 22. září 2017

Liqvis Germany Orders Two Cryonorm LNG Fueling Stations

více » 
 
NGVA - Zemní plyn a biometan v dopravěNgva europeScientists increase capacity of NGV fuel tanks
 
 

Scientists increase capacity of NGV fuel tanks

 

pondělí, 9. listopadu 2015

A new and innovative way to store methane could speed the development of natural gas-powered cars that don’t require the high pressures or cold temperatures of today’s compressed or liquefied natural gas vehicles, the magazine of the University of California Berkeley writes. The findings have been published online on October 26 in the science journal Nature.

UC Berkeley chemists, together with Ford Motor Company and the US Department of Energy, have developed a porous and flexible material — a so-called metal-organic framework (MOF) — for storing methane, the main compound of natural gas. MOFs have a lot of internal surface area to adsorb gases — that is, for gas molecules to stick to the internal surfaces of the pores — and store them at high density. The flexible MOF collapses when the methane is extracted to run the engine, but expands when the methane is pumped in at only moderate pressure: 35 to 65 times atmospheric pressure compared to 250 times for Compressed Natural Gas (CNG) at present.

“This is a big advance both in terms of capacity and thermal management,” says Jeffrey Long, the UC Berkeley professor who has led the research. “With these new flexible MOFs, you can get to capacities beyond what was thought possible with rigid MOFs, significantly extending driving ranges.”

Among the other advantages of flexible MOFs, Long says, is that they do not heat up as much, so there is less cooling of the fuel required.

“If you fill a tank that has adsorbent, such as activated charcoal, when the methane binds it releases heat,” he said. “With our material, some of that heat goes into changing the structure of the material, so you have less heat to dissipate, less heat to manage. You don’t have to have as much cooling technology associated with filling your tank.”

The flexible MOF material could perhaps even be placed inside a balloon-like bag that stretches to accommodate the expanding MOF as methane is pumped in, so that some of the heat given off goes into stretching the bag.

Natural gas from oil wells is one of the cheapest and cleanest fossil fuels today, used widely to heat homes as well as in manufacturing and to produce electricity. It has yet to be widely adopted in the transportation sector, however, because of the expensive and large on-board compressed fuel tanks.

In order to advance on-board natural gas storage, Ford Motor Company teamed up with UC Berkeley on this project, with funding from the Advanced Research Projects Agency–Energy (ARPA-E) of the U.S. Department of Energy. Ford is a leader in CNG/propane-prepped vehicles with more than 57,000 sold in the U.S. since 2009, more than all other major U.S. automakers combined.

According to Mike Veenstra, of Ford’s research and advanced engineering group in Dearborn, Michigan, Ford recognized that ANG has the potential to lower the cost of on-board tanks, station compressors and fuel along with serving to increase natural gas-powered vehicle driving range within the limited cargo space.

“Natural gas storage in porous materials provides the key advantage of being able to store significant amounts of natural gas at low pressures than compressed gas at the same conditions,” said Veenstra, the principal investigator of this ARPA-E project. “The advantage of low pressure is the benefit it provides both on-board the vehicle and off-board at the station. In addition, the low-pressure application facilitates novel concepts such as tanks with reduced wall thicknesses along with conformable concepts which aid in decreasing the need to achieve the equivalent volumetric capacity of compressed CNG at high pressure.”

Long has been exploring MOFs as gas adsorbers for a decade, hoping to use them to capture carbon dioxide emitted from power plants or store hydrogen in hydrogen-fueled vehicles, or to catalyze gas reactions for industry. Last year, however, a study by UC Berkeley’s Berend Smit found that rigid MOFs have a limited capacity to store methane. Long and graduate student and first author Jarad Mason instead turned to flexible MOFs, noting that they behave better when methane is pumped in and out.

The flexible MOFs they tested are based on cobalt and iron atoms dispersed throughout the structure, with links of benzenedipyrazolate (bdp). Both cobalt (bdp) and iron (bdp) are highly porous when expanded, but shrink to essentially no pores when collapsed.

Their first experiments on these compounds already surpass the theoretical limits for rigid MOFs, Long said. This is a fundamental discovery that now needs a lot of engineering to find out how best to take advantage of these new adsorbent properties.”

He and his colleagues are also now developing flexible MOFs to store hydrogen.

Natural gas is cleaner-burning than gasoline and diesel and emits less CO2, and today there are more than a million compressed natural gas (CNG) vehicles on the road in the world, many of them trucks and buses.

 The flexible MOF can be loaded with methane at 35 to 65 times atmospheric pressure, whereas compressed natural gas (CNG) vehicles compress natural gas into an empty tank under 250 atmospheres.

http://www.ngvaeurope.eu/scientists-increase-capacity-of-ngv-fuel-tanks
 
 
 
 
Co je CNG? CNG je zkratka pro stlačený zemní plyn (compressed natural gas). více »